Synthesis and Characteristics of Mesoporous Sol-gels for Lipase Immobilization

author

Abstract:

Enzyme cost is the major problem for industrial scale application. Immobilization is a promising approach to moderate the enzyme cost factor and increase its stability and activity. In this study, sol-gel method was used to prepare the immobilization platform and entrapped lipase as one of the most used enzyme in dairy processing, cosmetics and pharmaceutical industries. Lipase from Candida rugosa was immobilized onto glycidoxypropyltrimethoxysilane(GPTMS) and tetramethoxysilane (TMOS) derived sol-gels and the characteristics and hyrdrolytic activity were investigated. Michaelis-Menten kinetic properties reveal that although free enzyme can catalyze the reaction faster, but it has lower affinity for substrate molecules compared to sol-gel immobilized lipase. Entrapped lipase retained 67 % of its initial activity after six reaction cycles. It showed 100% activity compared to free lipase powder at 40-45°C. In pH 9, as free enzyme lost 90 % of its initial activity, immobilized lipase lost only 29% of its activity. Immobilized enzyme was more stable toward different pHs (100% activity at pH 7.5 compared to free form). Morphological characteristics of the immobilized enzyme were investigated by SEM images and BET. The sample had specific surface area and mean pore diameter of 2.599 m2/g and 46.13 nm.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Sol-gel synthesis of ordered mesoporous alumina.

Well-ordered mesoporous alumina materials with high surface area and a narrow pore size distribution were synthesized using a sol-gel based self assembly technique.

full text

Optimization of Lipase Immobilization

Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. In order to purify the enzyme, precipitation was done first, and then this lipase has been purified by Ion exchange Chromatography leading to 2.3-fold purification and 11.47% recovery. Lipase from P.aeruginosa was entrapped into Ca-alginate gel beads and effect of independent varia...

full text

Lipase Immobilized into Novel GPTMS: TMOS Derived Sol-Gels and Its Application for Biodiesel Production from Waste Oil

In this essay, lipase from Burkholderia cepacia was immobilized into 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) derived sol-gels. GPTMS:TMOS molar ratio of 1:3 was found to yield the best result. The morphological characteristics were investigated based on SEM and BET analysis. Sample mean pore diameter was 39.1 nm, it had a specific surface area of 60 m2/g prior to...

full text

Frozen Microemulsions for MAPLE Immobilization of Lipase.

Candida rugosa lipase (CRL) was deposited by matrix assisted pulsed laser evaporation (MAPLE) in order to immobilize the enzyme with a preserved native conformation, which ensures its catalytic functionality. For this purpose, the composition of the MAPLE target was optimized by adding the oil phase pentane to a water solution of the amino acid 3-(3,4-dihydroxyphenyl)-2-methyl-l-alanine (m-DOPA...

full text

Immobilization of Rhizomucor miehei Lipase on High Density Polyethylene

 Immobilization of Lipase produced from Rhizomucor miehei on HDPE fine powder was investigated. As compared to an aqueous system, immobilization in a non-aquous organic medium such as n-hexane was not successful and caused enzyme denaturation. Prewetting the support with ethanol increased the immobilized protein and enzyme activity as much as 31% and 34%, respectively. The maximum immobilized a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 27  issue 10

pages  1495- 1502

publication date 2014-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023